## Week 9: Covariates and Context AIM-5014-1A: Experimental Optimization

David Sweet // 20230727

## Review: LLN, CLT, A/B Testing

- As  $N \to \infty$ ,  $\bar{y} \to E[BM]$  (LLN)
  - CLT:  $\bar{y} \sim \mathcal{N}(E[BM], \sigma^2)$ , "measured BM is gaussian"

• **Design**: 
$$N \ge \left(\frac{2.5\hat{\sigma}_{\delta}}{PS}\right)^2$$

- Measure: Randomize,  $\bar{\delta} = \bar{y}_R \bar{y}_A$ , se
- . Analyze: Accept B if  $\bar{\delta} > PS$  and  $-\!\!\!\!-\!\!\!\!- \geq 1.64$  (check guardrails) Se
- False Positive Traps: Early stopping, multiple comparisons (use Bonferroni)

$$= \sigma_{\delta} / \sqrt{N}$$

### **Review: Response Surface Methodology**

- Parameters:
  - categorial: discrete unordered, strings; ex: A/B
  - ordinal: discrete ordered, integers; ex: 1, 2, 3, ...
  - continuous: double; ex., [0,1] <== RSM
- Surrogate, y(x), models response surface, E[y(x)]• Find optimum,  $x^* = \arg \max y(x)$ , and validate by A/B test

X



### **Review: Bayesian Optimization**

- Surrogate: Gaussian Process Regression (GPR)
  - non-parametric, estimates both  $\hat{y}(x)$ ,  $\hat{\sigma}(x)$
- Acquisition function:  $af(\hat{y}(x), \hat{\sigma}(x))$ 
  - determines next arms,  $\{x_a\}$ , to measure
  - balances exploration with exploitation



### **Case: Catalog Search**

- Shopping site search results; ex., "toothpaste"
- Goal: More clicks earlier in list
  - Like this?: Crest, Colgate, Tom's, Hello
  - Like this?: Tom's, Hello, Crest, Colgate
- ML model determines ranking score; two versions: A & B
- Compare by A/B test



### **Case: Catalog Search**

- Metric: Rank of item the user first clicks on
  - Negate, so metric gets maximized: -rank
- Ex: Crest, **Colgate**, Tom's, Hello;
  - User clicks Colgate, metric is  $y_i = -2$
- Confounder: User's avg. purchasing rate (APR)
  - Users who buy more (less) often will do so with model A or B



### Confounder

- BAD: Show A to high APR, B to low APR
  - Will measure  $\bar{y}_a > \bar{y}_b$ , but would just measure APR difference
- GOOD: Randomize

### **Aside: Linear Regression for A/B Testing**

- You can analyze an A/B test with linear regression
- Collect all observations of metric,  $y_i$ 
  - If observation from model B, then  $\chi_{b,i} = 1$
- Linear model

• Two parameters to fit  $\bar{y}_a$ ,  $\delta$ , just like  $\alpha$  and  $\beta$ 

 $y_i = \alpha + \beta x + \varepsilon_i$  $y_i = \bar{y}_a + \bar{\delta}\chi_{b.i} + \varepsilon_i$ 

**Aside: Linear Regression for A/B Testing** 

- $y_i = \bar{y}_a + \bar{\delta}\chi_{b,i} + \varepsilon_i$
- Set  $X = \begin{bmatrix} 1 & \chi_b \end{bmatrix}$ , then write  $y = X\beta + \varepsilon$  and regress:

$$\begin{bmatrix} \bar{y}_{a} \\ \bar{\delta} \end{bmatrix} = \beta = (X^{\top}X)^{-1}(X^{\top}y), \begin{bmatrix} se_{\bar{y}_{a}}^{2} \\ se_{\bar{\delta}}^{2} \end{bmatrix} = se_{\beta}^{2} = VAR(\varepsilon)(X^{\top}X)^{-1}$$
  
egression gives you  $\bar{\delta}$  and  $t = \frac{\bar{\delta}}{se_{\bar{\delta}}}$  Same result as the usual way

IOW, re

### Confounder

- GOOD: Randomize to break  $corr(APR, \chi_b)$ 
  - But APR still correlated with  $\bar{y}$
- BETTER: Randomize, & also model  $corr(APR, \bar{y})$

$$y_i = \bar{y}_a + \bar{\delta}\chi_b$$

Add APR as a regressor, regress to get  $\bar{\delta}$  and t = ---

# $\beta_{i} + \beta_{APR}APR_i + \varepsilon_i$ $\delta$ $Se_{\bar{\delta}}$

### **Covariate Adjustment**

- Effect:
  - $\overline{\delta}$  has lower  $se_{\overline{\delta}}$
  - NB:  $E[\bar{\delta}]$  doesn't change; property of the system

• Lower 
$$se_{\bar{\delta}} ==>$$
 higher  $t = \frac{\bar{\delta}}{se_{\bar{\delta}}}$ 

• Higher *t*, lower FP

### • APR is called a covariate; adding to regression is called covariate adjustment

### **Covariate Adjustment**

- Could add any other covariates
- etc.

$$y_i = \bar{y}_a + \bar{\delta}\chi_{b,i} + \sum_k \beta_k x_{k,i} + \varepsilon_i$$

Add each user's historical avg.; called CUPED

$$y_i = \bar{y}_a + \bar{\delta}\chi_{b,i} + \sum_k \beta_k x_{k,i} + \sum_u \beta_u \bar{y}_{hist,u_i} + \varepsilon_i$$

• Time of day, age of user, user's avg. rate of purchase of specific product classes,

https://exp-platform.com/Documents/2013-02-CUPED-ImprovingSensitivityOfControlledExperiments.pdf

### **Covariate Adjustment**

• Go nuts: Build an ML regression model of all features in your feature store:  $y_i = ML(x_i) + \varepsilon_i$ 

• Ex., ML == NN or GBM

• Then replace linear covariates

$$y_i = \bar{\delta}\chi_{b,i} + \beta_M$$

 Called MLRATE (ML Regression Average Treatment Effect) https://arxiv.org/abs/2106.07263

### $ML(x_i) - \bar{y}_a) + \varepsilon_i$

### **Randomization With Covariates**

- Thompson Sampling reduces number of observations needed
- Recall: Model  $\bar{y}_a \sim \mathcal{N}(E[y_a], \sigma_a^2), \bar{y}_b \sim \mathcal{N}(E[y_b], \sigma_b^2)$
- When each user arrives:
  - Draw one value each of  $\bar{y}_a$ ,  $\bar{y}_b$  from normal dists
  - Send user to model A if  $\bar{y}_a > \bar{y}_b$ , and vice-versa
- Covariates called context here

Contextual Bandit

### **Contextual Bandit**

- Model  $\bar{y}_a \sim \mathcal{N}(E[y_a | x], \sigma_a^2)$
- IOW:

$$y_i = \bar{y}_a + \bar{\delta}\chi_{b,i} + \sum_k \beta_k x_{k,i} + \varepsilon_i$$

- Just set
  - $\chi_{b,i} = 0$  to query  $\bar{y}_a$
  - $\chi_{b,i} = 1$  to query  $\bar{y}_b$

 $\boldsymbol{\varepsilon}_i \sim \mathcal{N}(\boldsymbol{0}, \boldsymbol{\sigma}^2)$ 

Also need to update regression parameters sequentially

### **Contextual Bandit**

- Higher precision w/covariates (context) ==>
  - Better decisions about which arm to use
- Could take it further w/interaction terms like  $\chi_h x_k$ 
  - I.e., In some contexts, A is better
  - In some contexts, B is better
- Beyond scope of this lecture

- Randomization breaks correlation between effect  $(\chi_{k})$  and confounder  $(x_{k})$ 
  - On average
  - As  $N_{\text{experiments}} \rightarrow \infty$ , < corr
- In any single experiment,  $corr(x_k, \chi_h)$  is non-zero,  $se[corr(x_k, \chi_h)] > 0$
- Try to make  $se[corr(x_k, \chi_h)]$  smaller with good design

$$(x_k,\chi_b) > \to 0$$

- Regression models ("regresses out") covariate  $(x_k)$  impact on metric (y)
  - On average
  - As  $N_{\text{experiments}} \to \infty$ ,  $< \beta_k > \to E[\beta_k]$
- In any single experiment,  $\beta_k$  has  $se[\beta_k] > 0$
- Try to make  $se[\beta_k]$  even smaller with good design

$$\beta_k \propto corr(x_k, y)$$

- Lower  $se_{\bar{\delta}} ==>$  higher  $t = \frac{\bar{\delta}}{se_{\bar{\delta}}}$  is great
  - Lowering FP for fixed experimentation cost
- Could also capitalize on lower  $se_{\bar{\delta}}$  by reducing N
  - You'd be reducing the experimentation code (for fixed FP)
- Lower  $se[corr(x_k, \chi_b)]$  and  $se[\beta_k] ==> \text{lower } se_{\bar{\delta}}$

Analysis time: 
$$y_i = \bar{y}_a + \bar{\delta}\chi_{b,i} + \sum_k \beta_k x_k$$

- Design time: Estimate  $se_{\bar{\lambda}}$  from this regression
- Don't *know* observations,  $y_i$ ,  $\chi_{b,i}$   $x_{k,i}$
- Instead *plan* them:
  - Use PS to design layout of  $\chi_{b,i} x_{k,i}$  and estimate  $se_{\delta}$

• Analogous to 
$$N = \left(\frac{2.5\sigma_{\delta}}{PS}\right)^2$$

 $_{k}x_{k,i} + \varepsilon_{i}$ 

- Ask: What would  $se_{\bar{\delta}}$  be if I
  - Used N observations? (usual A/B test design  $se = \sigma_{\delta}/\sqrt{N}$ )
  - Included covariate  $x_k$ ?
  - Used  $n_a$  observations of  $\bar{y}_a$  and of  $n_b$  of  $\bar{y}_b$ ?
  - Exposed  $n_{a,k-high/low}$  observations to a high/low level of  $x_k$ , and similarly  $n_{b,k-high/low}$
- And so on...

- Can optimize the design to minimize  $se_{\bar{\delta}}$ 
  - Which minimizes N
- You're seeking similar numbers of observations for
  - A and B
  - (A,  $x_k$  high), (A,  $x_k$  low), (B,  $x_k$  high), (B,  $x_k$  low)
  - etc.
- Keeps *se*'s low for all parameters in regression



Could literally run an optimizer

Good "exploration" of both arms and covariate space

- Neat trick: Pairing / matching
- Pair off each user with a very similar user
  - Similar by features: demographics, usage habits, etc.
- Expose (randomly) one user from each pair to A and the other to B
- Carefully balances exposure to covariates, reducing  $se[corr(x_k, \chi_b)]$  and providing samples appropriate to reduce  $se[\beta_k]$

### Summary

- Reduce experimentation cost by accounting for covariates
- Design: Include covariates, minimize  $se_{\delta}$
- Measurement: Contextual Bandit lacksquare
- Analysis: Covariate adjustment